Step of Proof: before_last
11,40
postcript
pdf
Inference at
*
2
1
I
of proof for Lemma
before
last
:
1.
T
: Type
2.
T
List
3.
u
:
T
4.
v
:
T
List
5.
x
:
T
. (
x
v
)
(
(
x
= last(
v
)))
x
before last(
v
)
v
6.
x
:
T
7. (
x
=
u
)
(
x
v
)
8.
(
x
= last([
u
/
v
]))
(
x
=
u
& [last([
u
/
v
])]
v
)
[
x
; last([
u
/
v
])]
v
latex
by ((((((((((ParallelOp (-2))
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C
),(first_nat 1000:n)) (first_tok :t) inil_term)))
)
CollapseTHEN (Reduce 0))
)
CollapseTHEN (
C
SimpConcl))
)
CollapseTHEN (RWO "last_cons" 0))
)
CollapseTHEN ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
: .....rewrite subgoal..... NILNIL
C1:
7.
x
=
u
C1:
8.
(
x
= last([
u
/
v
]))
C1:
(
null(
v
))
C
2
:
C2:
7.
x
=
u
C2:
8.
(
x
= last([
u
/
v
]))
C2:
[last(
v
)]
v
C
3
: .....rewrite subgoal..... NILNIL
C3:
7. (
x
v
)
C3:
8.
(
x
= last([
u
/
v
]))
C3:
(
null(
v
))
C
4
:
C4:
7. (
x
v
)
C4:
8.
(
x
= last([
u
/
v
]))
C4:
[
x
; last(
v
)]
v
C
.
Definitions
{
T
}
,
if
b
then
t
else
f
fi
,
ff
,
null(
as
)
,
b
,
t
T
,
True
,
T
,
,
P
Q
,
P
Q
,
P
&
Q
,
P
Q
,
A
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
false
wf
,
last
wf
,
last
cons
,
true
wf
,
squash
wf
,
sublist
wf
origin